Регулятор давления с электромагнитным клапаном VAD Регулятор постоянного соотношения «газ/воздух» с электромагнитным клапаном VAG Регулятор переменного соотношения «газ/воздух» с электромагнитным клапаном VAV

Техническая информация · RUS **3.1.0.4** Редакция 03.08

- Многофункциональный газовый серворегулятор со встроенным запорно-предохранительным клапаном
- Предназначен для тах входного давления до 500 мбар
- Выходное давление до 100 мбар
- Для импульсного режима управления
- Легкость монтажа в газовую систему
- Минимальные трудозатраты при монтаже: не требуется внешних импульсных линий
- Индикация работы с помощью сигнальных лампочек LED
- Высокое качество регулирования
- Точная настройка с двух сторон
- Сертифицированы в ЕС, Канаде и России


Оглавление

VAD1	VAV	•
Регулятор постоянного соотношения «газ/воздух»с	3.5 Регулятор давления газовым электромагнитным	
электромагнитным клапаном VAG1	клапаном VaxS с указателем положения и	••
Регулятор переменного соотношения «газ/воздух»с	визуальным индикатором	. 10
электромагнитным клапаном VAV	3.6 Анимация	. 1
Оглавление	3.7 Схема электроподключения	
1 Применение	3.7.1 VAD, VAG, VAV с кабельным вводом M20	
1.1 Примеры применения	3.7.2 VAD, VAG, VAV с штекером	
1.1.1 Контроль постоянного давления	3.7.4 VAS c VAD, VAG, VAV со штекером	
1.1.2 Контроль постоянного давления с 2-мя газовыми	4 Возможность замены регуляторов MODULINE с	
электромагнитными клапанами 6	электромагнитным клапаном	. 19
1.1.3 Контроль постоянного давления с датчиком максимального давления	4.1 GVS, GVI, GVIB и GVR должны быть заменены н	на
1.1.4 Контроль постоянного давления с неуправляемым	VAD, VAG и VAG+VAS и VAV	. 19
выходом пилотного газового клапана	5 Расходные характеристики	. 2
1.1.5 Плавное регулирование	5.1 Пример выбора для VAD	. 2
электромагнитными клапанами	5.2 Пример выбора для VAG, VAV	.2
1.1.7 Плавное регулирование с двумя	5.3 Пример выбора для VAGN	.2
электромагнитными клапанами и с датчиком входного	6 Выбор	.2
давления	6.1 Регулятор давления с электромагнитным	
1.1.9 Контроль нулевого давления	клапаном VAD	.2
1.1.10 Плавное регулирование с регулятором	6.2 Регулятор постоянного соотношения «газ/	
переменного соотношения «газ/воздух»с	воздух» с электромагнитным клапаном VAG,	
электромагнитным клапаном	регулятор переменного соотношения «газ/воздух» (
для бытовых целей	электромагнитным клапаном VAV	
2 Сертификация	6.3 Принадлежности для VAD, VAG, VAV	
3 Принцип работы	7 Указания по проектированию	
3.1 VAD, VAG, VAV	7.1 Монтаж	
3.2 Газовый регулятор VAD	7.2 Установка минимальной нагрузки для VAG, VAV	_
3.3 Регулятор постоянного соотношения VAG 14	7.3 Установка минимальной нагрузки для VAV	
o.o. i orymmop noorommoro ocomomomini via 14	7.3.1 Расчет	

Оглавление

В Принадлежности	31
8.1 Датчик давления для газа DGVC для VAD, VAG, VAV	21
ДЛЯ VAD, VAG, VAV	
8.2 Датчик давления для газа DGVCT для VADT, VAGT	21
8.3 Байпасный клапан / пилотный	
сазовый клапан VAS 1	20
8.3.1 Комплект для блока VAS 1 + VAD/VAG/ VAV 1.	32
8.3.2 Комплект для блока VAS 1 + VAD/VAG/VAV 2,	
VAD/VAG/VAV 3	
8.3.3 Расходные характеристики	33
8.4 Байпасный клапан /пилотный газовый	
клапан VBY 8 для VAD/VAG/VAV 1	34
8.4.1 Байпасный клапан VBY 8	
8.4.2 Пилотный газовый клапан VBY 8	
8.4.4 Расходные характеристики	
8.4.5 Технические данные	
8.5 Автомат контроля герметичности TC 116V	36
8.6 Штуцер для замера давления	
8.7 Уплотняющая втулка	
8.8 Комплект уплотнений VA 1-3	
8.9 Дроссельная шайба	
8.10 Удерживающая рамка	37
8.11 Монтажный комплект	
8.12 Комплект фланцев для Moduline	38
9 Технические данные	39
9.1 Размеры	
IO Техническое обслуживание	42
Контакты	43

VAD: контроль выходного давления P_G с помощью точной настройки пружины

VAG: постоянство соотношения давлений газ/воздух с помощью управляющего давления воздуха

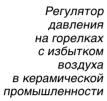
VAV: регулируемое соотношение давлений. Колебания давлений в камере сгорания могут быть скомпенсированы гомощью управляющего давления в камере сгорания р_г

1 Применение

Регулятор давления VAD, регулятор постоянного соотношения «газ/воздух» VAG и регулятор переменного соотношения VAV обеспечивает комбинирование отключения и точного контроля подачи газа для газовых горелок и в газоиспользующих установках. Для применения в системах автоматики безопасности газоснабжения во всех отраслях металлургической, стекольной и керамической промышленности, а также в котельных установках и др. отраслях народного хозяйства.

VAD

Регулятор постоянного давления, класса A, высокой точности, для газовых горелок, работающих при избытке воздуха, атмосферных горелок и одноступенчатых двухпроводных горелок. Настройка давления с помощью дополнительных пружин.

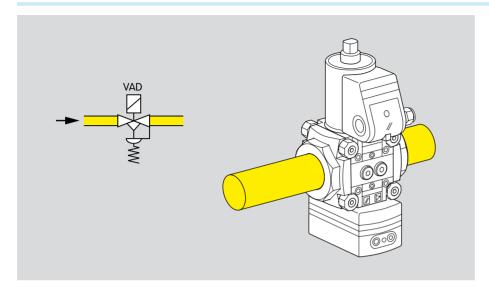

VAG

Регулятор постоянного соотношения газ/воздух, класса А, для поддержания постоянного соотношения давлений газа/воздуха для горелок с регулируемой мощностью или горелок, работающих в импульсном режиме с байпасным клапаном.

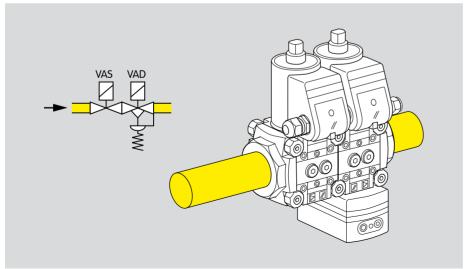
VAG..N может использоваться как ноль-регулятор для газовых двигателей.

VAV

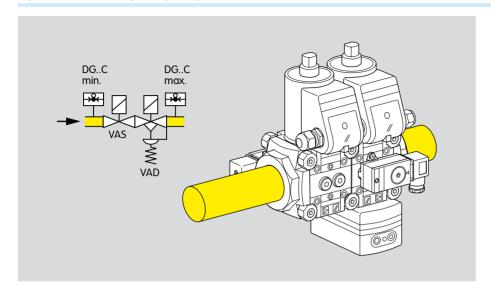
Регулятор переменного соотношения «газ/воздух» для поддержания определенного соотношения. Предварительная настройка давления с помощью воздушной управляющей линии. Соотношение давления газа к давлению воздуха остается постоянным. Оно может быть установлено в диапазоне от 0.6:1 до 3:1. Колебания давлений в камере сгорания могут быть скомпенсированы с помощью управляющего давления в камере сгорания р


Регулятор равенства давления в плавильной печи для обеспечения стехиометрического горения во всем диапазоне мощностей

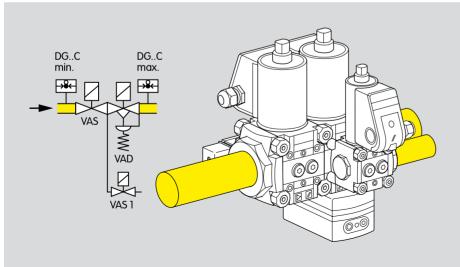
Алюминиевая печь старения с регуляторами равенства давлений для поддержания недостатка воздуха


Применение

1.1 Примеры применения


1.1.1 Контроль постоянного давления

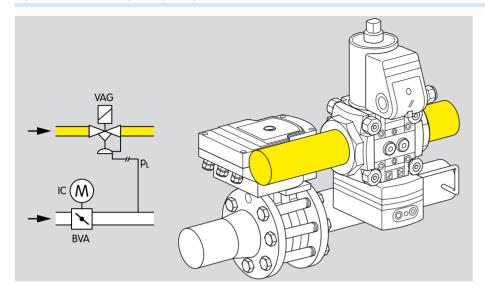
Регулятор давления с электромагнитным клапаном VAD поддерживает установленное давление газа на выходе р_G постоянным при разных расходах. Если перед VAD установлен второй газовый электромагнитный клапан, это соответствует требования EN 746-2 для 2х газовых электромагнитных клапанов класса A, установленных в линию.


1.1.2 Контроль постоянного давления с 2-мя газовыми электромагнитными клапанами

Регулятор давления с электромагнитным клапаном VAD поддерживает установленное давление газа на выходе p_G постоянным при разных расходах.

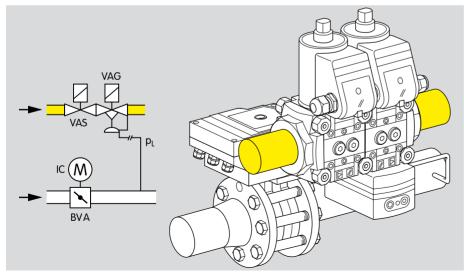
1.1.3 Контроль постоянного давления с датчиком максимального давления

В этом примере минимальное давление на входе p_e и максимальное давление на выходе p_G контролируется датчиками давления DG..C. Подключение датчиков давления в виде модуля облегчает монтаж.

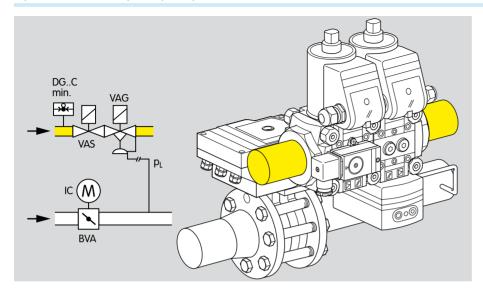


1.1.4 Контроль постоянного давления с неуправляемым выходом пилотного газового клапана

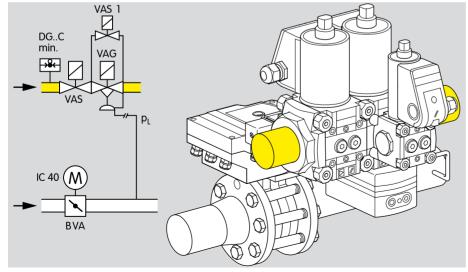
В этом примере газ с высоким входным давлением подается на запальную горелку через выход пилотного газового клапана. Подключение модуля байпасного клапана делает установку более удобной в обслуживании.


Минимальное входное давление p_e и максимальное выходное давление p_G контролируется с помощью датчиков давления p_G .С.

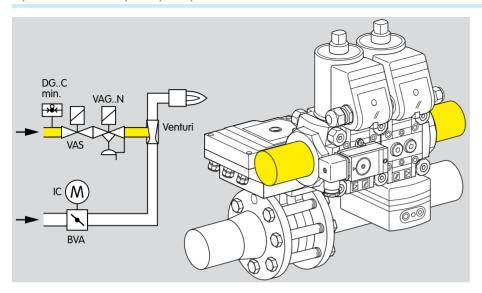
1.1.5 Плавное регулирование


Выходное давление газа p_G контролируется через регулятор соотношения газ/воздух с электромагнитным клапаном VAG. Выходное давление газа p_G изменяется вслед за контролируемым давлением воздуха p_L . Отношение давления газа к давлению воздуха остается постоянным. VAG подходит для диапазона регулирования до 10:1.

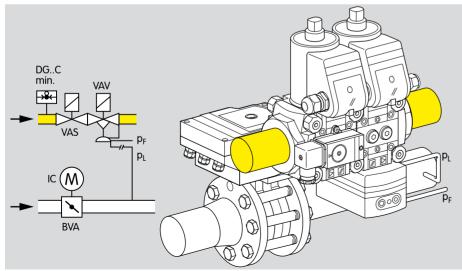
1.1.6 Плавное регулирование с двумя электромагнитными клапанами


Выходное давление газа p_G контролируется через регулятор соотношения газ/воздух с электромагнитным клапаном VAG. Выходное давление газа p_G изменяется вслед за контролируемым давлением воздуха p_L . Соотношение давлений газ/воздух остается постоянным. VAG подходит для диапазона регулирования до 10:1.

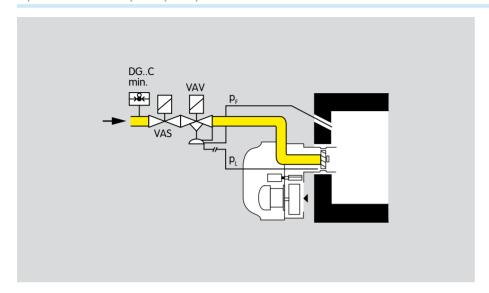
1.1.7 Плавное регулирование с двумя электромагнитными клапанами и с датчиком входного давления


В этом случае, минимальное входное давление p_e контролируется с помощью датчика давления DG..C. Простота подключения модуля датчиков давления делает установку более удобной в обслуживании.

1.1.8 Регулирование Максимум/ Минимум


При основной нагрузке выходное давление газа p_{G} изменяется вслед за контролируемым давлением воздуха p_{L} . Соотношение давлений газ/воздух остается постоянным. Минимальная нагрузка обеспечивается через байпасный клапан. Здесь также простота подключения модуля датчиков давления делает установку более удобной в обслуживании.

1.1.9 Контроль нулевого давления


В этом случае атмосферное давление является управляющим давлением. Проходя через сопло Вентури, воздушный поток создает отрицательное давление в газовом трубопроводе. Это отрицательное давление компенсируется регулятором постоянного давления с электромагнитным клапаном VAG..N. Увеличение разрежения требует увеличения расхода газа.

1.1.10 Плавное регулирование с регулятором переменного соотношения «газ/воздух» с электромагнитным клапаном

Соотношение между давлением воздуха и давлением газа плавно регулируется в диапазоне от 0,6:1 до 3:1. Колебания давлений в камере сгорания могут быть скомпенсированы с помощью управляющего давления в камере сгорания р_F (смотри Принцип действия VAV).

1.1.11 Плавное регулирование при производстве тепла для бытовых целей

В этом примере применения используется регулятор переменного соотношения с электромагнитным клапаном VAV смонтированный с горелкой с регулируемой мощностью с принудительной подачей воздуха.

Количество воздуха для сгорания регулируется с помощью дроссельной заслонки или изменением скорости вращения вентилятора.

(E

2 Сертификация

Испытано и сертифицировано в ЕЭС по

Директива по газовому оборудованию (90/396/ЕЭС) в сочетании с EN 161, EN 88 и EN 126, EN 126067 и EN 1854.

Соответствуют требованиям

- Директива по приборам низкого напряжения (2006/95/EC) в сочетании со специальными нормами,
- Электромагнитная совместимость (2004/108/EC) в сочетании с EN 55014-1.

Сертифицировано в Российской Федерации

- Сертификат Госстандарта ГОСТ-Р,
- Разрешение на применение Ростехнадзора РФ.

FM сертификация VAD. VAG

Общезаводское исследование по классу безопасности 7410 и 7411 для запорных клапанов высокого давления.

Разработано в соответствии с NFPA 85 и NFPA 86 (Национальная ассоциация гидравлических приводов США)

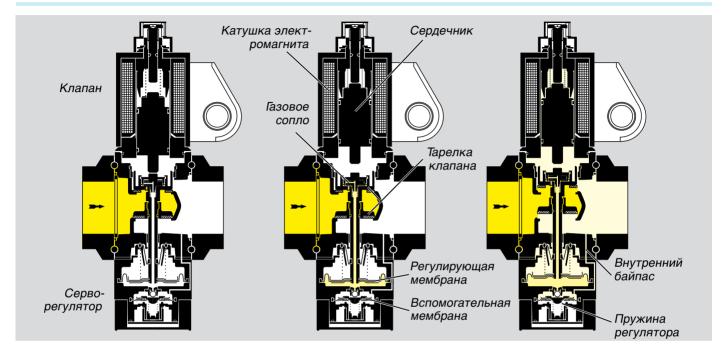
Сертификация по нормам CSA VAD. VAG

Канадская ассоциация стандартов -

ANSI Z21.21 и CSA 6.5 ANSI Z21.18 и CSA 6.3

Сертификация по нормам UL VAD, VAG

В стадии подготовки.


Сертификация по нормам AGA

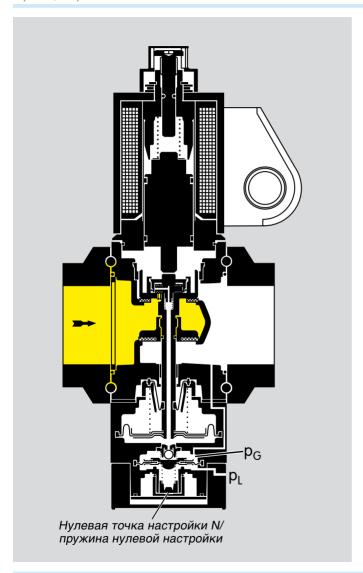
Австралийская газовая ассоциация

ВНИМАНИЕ!

ПРИ ПРОЕКТИРОВАНИИ ГАЗОПОТРЕБЛЯЮЩИХ СИСТЕМ УЧИТЫВАТЬ ТРЕБОВАНИЯ, ИЗЛОЖЕННЫЕ В "РУКОВОДСТВЕ ПО ЭКСПЛУАТАЦИИ" ДАННОГО ПРИБОРА!

3.1 VAD, VAG, VAV

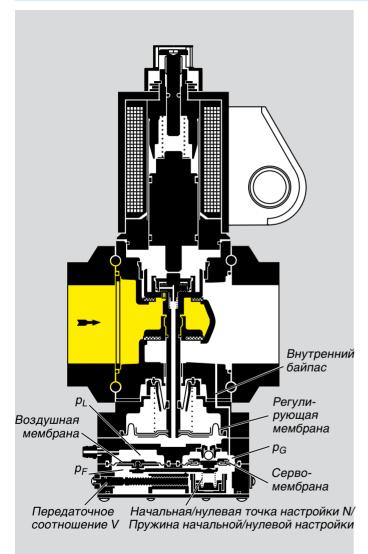
Регулятор закрыт, когда электропитание отключено.


Открытие: Переменное напряжение подается на электромагнитную катушку через выпрямитель с ограничителем напряжения. Загорается синяя сигнальная лампочка LED. Электромагнитное поле катушки втягивает шток с тарелкой клапана вверх и открывает отверстие для подвода входного давления p_e . Газ проходит через внутреннюю импульсную трубку под регулирующую мембрану и приподнимает тарелку клапана клапана для прохода газа. Выходное давление подается через внутренний байпас

на вспомогательную мембрану. Затем постоянство выходного давления p_G поддерживает серворегулятор.

3.2 Газовый регулятор VAD

Номинальное выходное давление p_G зависит от настройки пружины.



3.3 Регулятор постоянного соотношения VAG

Регулятор постоянного соотношения VAG поддерживает выходное давление p_G в соответствии с изменением давления воздуха.

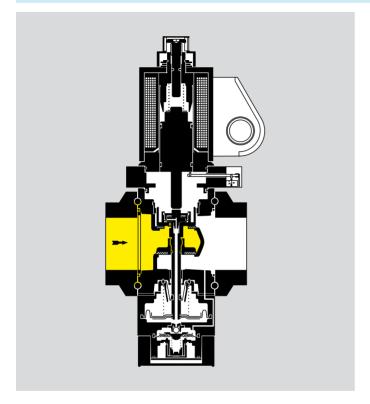
Соотношение газ/воздух остается постоянным: 1:1. VAG подходит для диапазона регулирования до 10:1.

Если горелка работает при минимальной нагрузке, давление газовоздушной смеси можно регулировать настройкой пружины на нулевую точку "N».

3.4 Регулятор переменного соотношения «газ/воздух» VAV

Серворегулятор поддерживает на выходе постоянное установленное давление p_G . Регулятор переменного соотношения давления VAV регулирует давление на выходе p_G в зависимости от переменного управляющего давления воздуха p_L . Соотношение между давлением газа и давлением воздуха остается постоянным.

Уставки N и V могут быть изменены и определены с обоих сторон прибора с помощью регулировочных винтов.

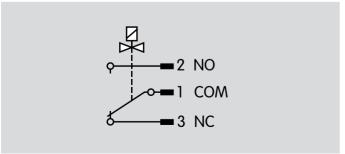

Соотношение между давлением газа и давлением воздуха при минимальной нагрузке можно регулировать с помощью настройки начальной точки N. При вращении регулировочного винта изменяется усилие пружины и таким образом начальная точка N перемещается на $\pm 1,5$ мбар (см. указания по проектированию).

Настройка основной нагрузки происходит путем вращения регулировочного винта «V», до тех пор пока не будет достигнуто необходимый результат анализа уходящих газов (см. указания по проектированию). Соотношение между давлением газа и атмосферным давлением регулируется от 0.6:1 до 3:1.

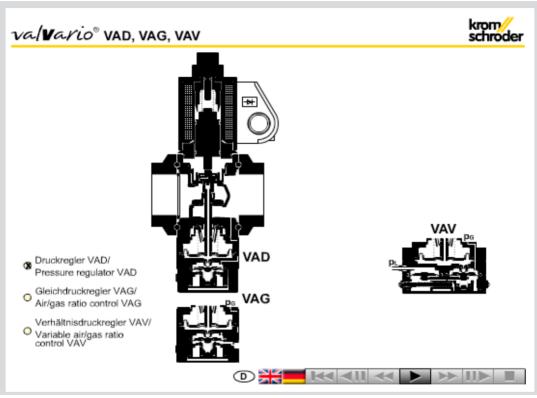
Уставки N и V влияют друг на друга и при необходимости нужно повторить настройку.

Выходное давление подается через внутренний байпас на вспомогательную мембрану. Управляющее давление камеры сгорания p_F передается в пространство под воздушной и вспомогательной мембраной через импульсную линию.

На воздушной мембране образуется перепад давлений $p_L - p_F$ а на вспомогательной мембране перепад $p_G - p_F$ Таким образом, колебания давления могут быть выравнены в камере сгорания. При колебаниях давления в камере сгорания показатели состава продуктов сгорания остаются постоянными $(p_G - p_F) = (p_L - p_F) \times V + N$.



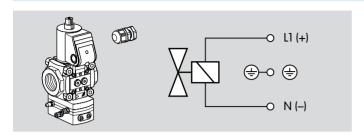
3.5 Регулятор давления газовым электромагнитным клапаном Vax..S с указателем положения и визуальным индикатором


Открытие: Когда клапан открыт, первоначально срабатывает индикатор положения. Это в свою очередь активирует визуальный индикатор. Сигнал «открыто» имеет красный цвет. Только после этого седло сдвоенного клапана открывает проход потоку газа.

Закрытие: Электропитание отключено от электромагнита и сжатие пружины вызывает прижатие двойного диска клапана к седлу. Затем активируется указатель положения и визуальный индикатор перемещается на отметку «закрыто».

Примечание: NFPA 86 – если мощность основной или пилотной горелки превысит 117 кВт: газовый электромагнитный клапан Vax..S должен быть оснащен визуальным индикатором и защищен выключателем; регулятор давления с электромагнитным клапаном Vax..S также должен быть оснащен визуальным индикатором. Один электромагнитный клапан должен контролируемо закрыт. Закрытое положение может контролироваться с помощью указателя положения газового электромагнитного клапана Vax..S.

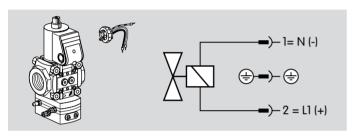
3.6 Анимация

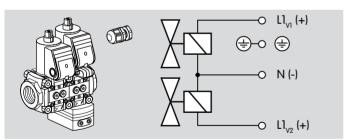

Интерактивная анимация показывает работу регуляторов ValVario VAD/VAG/VAV.

Щелкните по картинке. Анимацией можно управлять, используя панель управления у основания окна (как на DVD плеере).

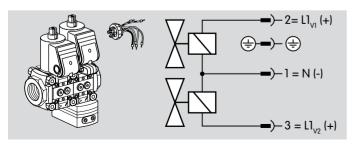
Чтобы просмотреть анимацию, Вам потребуется Adobe Reader 6 или более новая версия. Если у Вас нет Adobe Reader 7 Вы можете скачать его из Интернета. Зайдите на www.adobe.com, щелкните на, «Получить Adobe Reader» и следуйте за инструкциями.

Если анимация не работает, Вы можете загрузить это от библиотеки документов (Docuthek) как независимое применение.




3.7 Схема электроподключения

Электроподключение в соответствии с EN 60204-1. Схема электроподключения для Vax..S с указателем положения (см. Принцип действия, VAx..S)

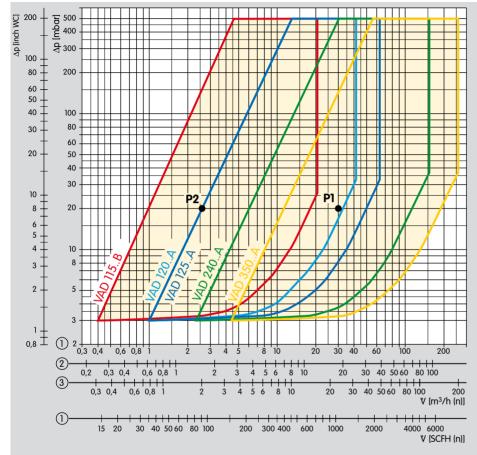

3.7.1 VAD, VAG, VAV с кабельным вводом M20

3.7.2 VAD, VAG, VAV с штекером

3.7.3 VAS c VAD/VAG/VAV с кабельным вводом M20

3.7.4 VAS c VAD, VAG, VAV со штекером

4 Возможность замены регуляторов MODULINE с электромагнитным клапаном


4.1 GVS, GVI, GVIВ и GVR должны быть заменены на VAD, VAG и VAG+VAS и VAV

Тип	Фланец		Тип
GVS	Регулятор с электромагнитным клапаном	Регулятор с электромагнитным клапаном	VAD
GVI	Регулятор соотношения газ/воздух	Регулятор постоянного соотношения газ/воздух	VAG
	с электромагнитным клапаном	с электромагнитным клапаном	
GVIB	Регулятор соотношения газ/воздух с электромагнитным клапаном и байпасным клапаном	таз/воздух с электромагнитным клапаном	+VAS
GVR	Регулятор соотношения газ/воздух с электромагнитным клапаном		VAV
115 125	3/8" Типоразмер 115 Типоразмер 125	LIO 32000CV	
115 125	1/2" Типоразмер 115 Типоразмер 125		115
115 125	3/4" Типоразмер 115 Типоразмер 125	ійпоразмер і Ом 20	120
115 125	1" Типоразмер 115 Типоразмер 125	ійпоразмер і Ом 25	125
232 240	1" Типоразмер 232 Типоразмер 240	по запросу	
232 240	1 1/2" Типоразмер 232 Типоразмер 240	ійпоразмер 2	240
350	1 1/2" Типоразмер 350		
350	2" Типоразмер 350	Типоразмер 3 DN 50	350
ML	MODULINE + присоединительные фланцы Rp-внутренняя резьба	нр-внутренняя резьоа	R
TML	MODULINE + присоединительные фланцы NPT-внутренняя резьба	NP 1-внутренняя резьоа	N
01	р _{е max.} : 100 мбар	р _{е max.} : 500 мбар	•
02	200 мбар	500 мбар	•

Продол	лжение								
•		Быстро открываю	щийся	Быстро открывающийся		/N			
K	Нап	ряжение питания:	24 V=	Напряжение питания: 24 V=					
Q			120 V~	120	0 V~	Q			
Т		220	/240 V~	23	0 V~	W			
3	Электроподклі	ючение через гермо	вводы	Электроподключение че	рез гермовводы	•			
6	Электроподключ	ение через станд. р	озетку	Электроподключение чег	оез станд. розетку	0			
9	Металли	ческая клеммная к	оробка	Электроподключение че	рез гермовводы	•			
S		Указатель поло	жения	Указатель положения с визуальным индикатором**					
G	Ука	затель положения н	на 24 В	Указатель положения на 24 B с визуальным индикатором**					
М		Подходит для б	иогаза	Подходит для биогаза					
•	Штуцер для изме	ерения давления на	входе	Штуцер для измерения давления на входе и выходе*					
				Выходное давление p _G :	2,525 мбар	-25			
•	Выходно	ое давление р _G : 29	00 мбар		550 мбар	-50			
					10100 мбар	-100			
				Стандартный затвор		Α			
с соеди	50ML01Т3 инительными ами Rp2	Γ	Іример	Пример	VAD 350R/NV со штую для измерения да	церами			

- = стандарт, = по запросу
- * Штуцер для измерения давления может быть приложен с левой и/или правой стороны прибора.
- ** Указатель положения с визуальным индикатором может быть приложен с левой и/или правой стороны прибора.

5 Расходные характеристики

5.1 Пример выбора для VAD

Природный газ,

Расход $V_{\text{max}} = 30 \text{ м}^3/4$,

Входное давление $p_e = 80$ мбар, Выходное давление $p_G = 60$ мбар.

Выбранное соотношение регулирования в диапазоне от основной до минимальной нагрузкит R_V = 10:1.

Основная нагрузка:

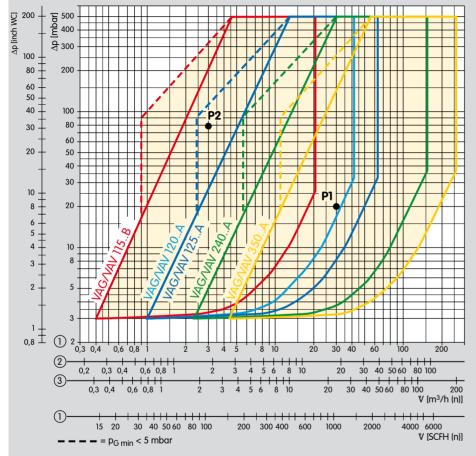
 $\Delta p = p_e - p_G = 20$ мбар -> точка Р1

Минимальная нагрузка:

-> точка Р2: V _{min} = 2,6 м³/ч при

 $\Delta p = 20$ мбар

 $\dot{R}_{V} = \dot{V}_{max} / \dot{V}_{min} = 11,5:1$


Точки Р1 и Р2 должны быть в пределах рабочего диапазона типоразмера регулятора. Рекомендуем выбирать наименьший размер для достижения оптимального регулирования.

① = Природный газ (ρ = 0,80 кг/м³)

② = Пропан (ρ = 2,01 кг/м³)

(3) = Воздух (ρ = 1,29 кг/м³)

Расходные характеристики были составлены при фланцах соответствующих типоразмеру прибора и встроенной сетке. Если два или больше клапана объединены в блок, потери давления в каждом клапане снижаются приблизительно на 5%.

- (1) = Природный газ (ρ = 0,80 кг/м³)
- ② = Пропан (ρ = 2,01 кг/м³)
- ③ = Воздух (ρ = 1,29 кг/м³)

Расходные характеристики были составлены при фланцах соответствующих типоразмеру прибора и встроенной сетке. Если два или больше клапана объединены в блок, потери давления в каждом клапане снижаются приблизительно на 5%.

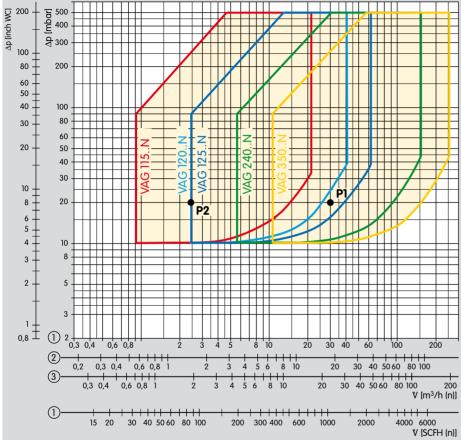
5.2 Пример выбора для VAG, VAV

Природный газ, Расход $\dot{V}_{max}=30~\text{м}^3/\text{ч},$ Входное давление $p_e=80~\text{мбар},$ Выходное давление $p_{G~max}$ VAG = 60 мбар.

Выбранное соотношение регулирования в диапазоне от основной до минимальной нагрузки $R_V = 10:1$.

Основная нагрузка:

 $\Delta p = p_e$ - $p_{G max} = 20$ мбар -> Точка Р1


Минимальная нагрузка:

 $p_{G min} = p_{G max} / R_V^2 = 0,6$ мбар $\dot{V}_{min} = \dot{V}_{max} / R_V = 3$ м³/ч

 $\Delta p = p_e - p_{G min} = 79,4$ мбар

-> Точка Р2, выбор: VAG 120..A

Точки Р1 и Р2 должны быть в пределах рабочего диапазона типоразмера регулятора. Рекомендуем выбирать наименьший размер для достижения оптимального регулирования.

- (1) = Природный газ (р = 0.80 кг/м³)
- ② = Пропан (ρ = 2,01 кг/м³)
- (3) = Воздух (ρ = 1,29 кг/м³)

Расходные характеристики были составлены при фланцах соответствующих типоразмеру прибора и встроенной сетке. Если два или больше клапана объединены в блок, потери давления в каждом клапане снижаются приблизительно на 5%.

5.3 Пример выбора для VAG..N

Природный газ, Расход $\dot{V}_{max}=30~\text{м}^3/\text{ч},$ Входное давление $p_e=20~\text{мбар},$ Выходное давление $p_G=0~\text{мбар}$ (атмосферное давление).

Выбранное соотношение регулирования в диапазоне от основной до минимальной нагрузки $R_V = 10:1$.

Основная нагрузка:

 $\Delta p = p_e - p_G = 20$ мбар -> Точка Р1

Минимальная нагрузка:

-> Точка Р2: У_{min} = 2,4 м³/ч при

 $\Delta p = 20$ мбар

 $R_V = \dot{V}_{max} / \dot{V}_{min} = 12,3:1$

Точки Р1 и Р2 должны быть в пределах рабочего диапазона типоразмера регулятора. Рекомендуем выбирать наименьший размер для достижения оптимального регулирования.

6 Выбор

Пример заказа

VAD 240R/NW-100A

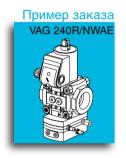
6.1 Регулятор давления с электромагнитным клапаном VAD

Сертифицировано и испытано по нормам EC, ..Т (Т-продукт), по нормам FM и CSA

¹⁾ В случае одинаковых номинальных диаметров входных и выходных фланцев возможна поставка VAD 240 и VAD 350.

Продолжени	ı	_		O1 0)	O1 0)	OD (1)	OD 0\	ı					50	400	۱ م ۵۱	D 2\
Тип	K	Q	W			SR ²⁾						-25	-50	-100	A 3)	B3)
VAD 1		•		0	0	0	0		0	0	0	•	•	•	•	•
VAD 2	•	•		0	0	0	0	•	0	0	0	•	•	•	•	
VAD 3	•	•	•	0	0	0	0	•	0	0	0	•	•	•	•	
Напряжение	сети	:														
24 B= = K 120 B~; 50/60 Γμ = Q 230 B~; 50/60 Γμ = W																
Указатель положения, слева: с визуальным индикатором = SL 2) на 24 В с визуальным индикатором = GL 2)																
Указатель положения, справа: с визуальным индикатором = SR ²) на 24 В с визуальным индикатором = GR ²)																
Электроподи	ключе	ение:														
Гермоввод М Штекер с роз Штекер без I	20 зетко	й														
Присоединит	ельн	ые пр	инад	ілежн	ости	встро	енные				ı					
Макс. выході	ное д	авле	ние р	G max.												
2,525 мбар				=	25											
5,050 мбар = 50																
10,0100 мбар = 100																
Стандартное седло клапана $= A^{(3)}$																
Уменьшенно	е седл	по кла	апана	a = B	3)											

²⁾ VAD 1-3: Указатель положения и байпасный клапан могут быть встроены вместе с той же стороны.



³⁾ A = Все типоразмеры, начиная с типоразмера 20, В = типоразмер 1 с выходным номинальным диаметром 15.

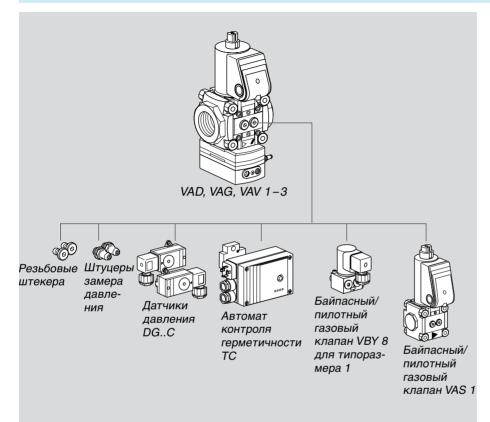
 ⁼ стандарт, $\bigcirc =$ по запросу

6.2 Регулятор постоянного соотношения «газ/воздух» с электромагнитным клапаном VAG, регулятор переменного соотношения «газ/воздух» с электромагнитным клапаном VAV

VAG: Сертифицировано и испытано по нормам EC, ..Т (Т-продукт) по нормам FM и CSA VAV: Сертифицировано и испытано по нормам FC

vAv: Сертифицировано и испытано по нормам EC																			
Тип	Т	-	10	15	20	25	32	40	50	65	/15	/20	/25	/40	/50	R	Ν	F 1)	/N
VAG/VAV 1		•	•	•	•	•					•	•	•			•	0		•
VAG/VAV 2						lacktriangle	lacktriangle	•	•					•		•	0	0	•
VAG/VAV 3		•						•	•	•					•	•	0	0	•
Т-Продукт = Т																			
Номинальный размер входного фланца																			
Без входного фланца = -																			
Номинальный размер в	ыхо	дног	го ф	лан	ща														
Без входного фланца =	-																		
Обозначение отсутству	/ет, е	если	1 вы	ход	= B	ходу	/												
Внутренняя резьба Rp	Внутренняя резьба Rp = R																		
Внутренняя резьба NPT = N																			
ISO-фланец			= F	1)															
Быстро открывающийся, быстро закрывающийся = /N																			

¹⁾ В случае одинаковых номинальных диаметров входных и выходных фланцев возможна поставка VAG/VAV 240 и VAG/VAV 350.


Продолжение														
Tип K Q W	SL ²⁾	GL ²⁾	SR ²⁾	GR ²⁾					A 3)	B3)	Е	K	Α	Ν
VAG/VAV 1 ● ●	0	0	0	0	•	0	0	0	•	•	•	•	•	•
VAG/VAV 2 ● ●	0	0	0	0		0	0	0	•		•	•	•	•
VAG/VAV 3 ● ● ●	0	0	0	0	•	0	0	0	•		•	•	•	•
Напряжение сети:														
24 B= = K														
120 B~; 50/60 Гц = Q														
230 B~; 50/60 Гц = W														
Указатель положения, слева: с визуальным индикатором = SL ²)														
с визуальным индикатором на 24 В с визуальным индикато														
	pow –	G_	•											
с визуальным индикатором	Указатель положения, справа: с визуальным индикатором = SR 2)													
на 24 В с визуальным индикатором = GR ²)														
Электроподключение:														
Гермоввод М20														
Штекер с розеткой														
Штекер без розетки														
Присоединительные принадлех	кности	1 встр	оенн	ые										
отаприте образоната	A ³⁾													
	B3)													
Соединительный комплект														
для VAG при управлении давлением воздуха p _L /														
для VAV при управлении давлением воздуха р _L и управлении давлением камеры сгорания р _F :														
Зажимная муфта для VAG = E Крепление для пластмассовой трубки VAG. VAV = K														
Крепление для пластмассовой трубки VAG, VAV = K NPT адаптер 1/4 для VAG = A														
Ноль-регулятор для VAG				= N										

²⁾ VAG/VAV1-3: Указатель положения и байпасный клапан могут быть встроены вместе с той же стороны.

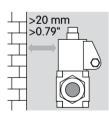
³⁾ A = Все типоразмеры, начиная с типоразмера 20, В = типоразмер 1 с выходным номинальным диаметром 15.

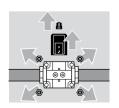
^{● =} стандарт, ○ = по запросу

Выбор

6.3 Принадлежности для VAD. VAG. VAV

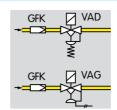
Модульное расширение с:

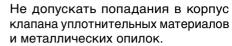

- Резьбовые штекера
- Штуцеры замера давления
- Датчики давления DG..VC для входного и выходного давления
- Автомат контроля герметичности ТС
- Байпасный/пилотный газовый клапан VBY 8 для типоразмера 1.
- Байпасный/пилотный газовый клапан VAS 1.


Дополнительная информация см. раздел «Принадлежности».

7 Указания по проектированию

Входное давление ре и выходное давление ра может быть измерено с двух сторон корпуса клапана.

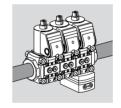

VAD: штуцер для измерения давления р_С на корпусе регулятора. Для увеличения точности регулирования вместо штуцера для измерения давления р должна быть подключена внешняя импульсная линия.

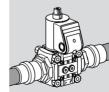

VAD: штуцер для измерения давления p_G на корпусе регулятора.

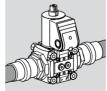
VAG: дополнительный штуцер для измерения давления воздуха р_і на корпусе регулятора.


VAV: штуцер для измерения давления р_G на корпусе регулятора.

7.1 Монтаж




Рекомендуется установка фильтра перед каждым клапаном или блоком клапанов.


В зависимости от окружающей температуры и напряжения корпус электромагнита во время работы может перегреваться.

Если установлено больше трех клапанов valVario в линию, необходима дополнительная опора.

Прокладки в некоторых зажимных муфтах рассчитаны на температуру до 70°C. Этот температурный предел не может быть превышен, если расход газа через трубопровод не больше 1м3/ч и макс.окружающая температура 50°С.

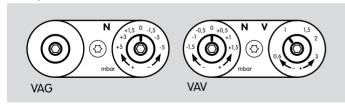
Минимальное расстояние 20 мм. Не храните и не устанавливайте прибор на открытом воздухе.

VAD, VAG, VAV не должен контакти-

ровать с посторонними предметами.

Обеспечьте достаточное место для монтажа фланцев и привода.

7.1.1 Монтажное положение


VAD, VAG: Монтажное положение вертикальное или горизонтальное, (для VAG горизонтальное положение, только при $p_e \ge 80$ мбар), положение вниз электромагнитом не допускается.

VAV: Монтажное положение только вертикальное.

Для обеспечения высокой точности регулирования соотношения газ/воздух при изменении нагрузки воздушная импульсная линия p_L у VAG и VAV, а также импульсная линия для управляющего давления камеры сгорания p_F у VAV должна быть как можно короче. Внутренний диаметр трубки для импульсных линий p_L и $p_F > 4$ мм.

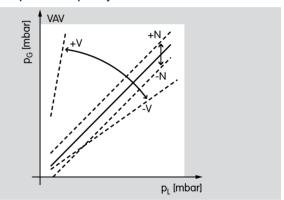
Импульсная линия для управляющего давления камеры сгорания p_F должна монтироваться так, чтобы не конденсат не мог попасть в регулятор давления, а стекал обратно в камеру сгорания.

7.2 Установка минимальной нагрузки для VAG. VAV

Если горелка эксплуатируется при минимальной нагрузке газовоздушная смесь может регулироваться параллельным перемещением расходной характеристики при вращении регулировочного винта "N».

Диапазон регулирования для минимальной нагрузки N: VAG: от -5 до +5 мбар.

VAV: от -1,5 до +1,5 мбар

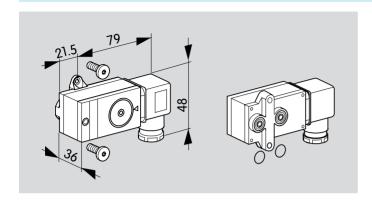

7.3 Установка основной нагрузки для VAV

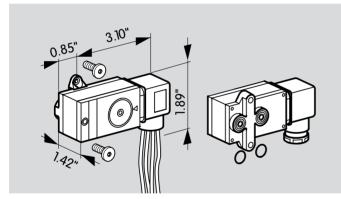
При установке основной нагрузки передаточное соотношение изменяют с помощью регулировочного винта «V».

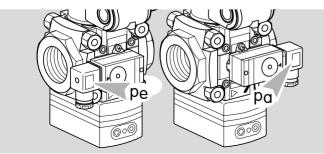
Передаточное соотношение:

 $V=p_G:p_L = 0,6:1...3:1.$

Уставки N и V влияют друг на друга и при необходимости нужно повторить настройку.


7.3.1 Расчет


Без подключения управляющего давления к камере сгорания р₌:


$$p_G = V \times p_L + N$$

С подключением управляющего давления к камере сгорания р₌:

$$(p_G - p_F) = V \times (p_L - p_F) + N$$

8 Принадлежности

8.1 Датчик давления для газа DG..VC для VAD, VAG, VAV

Тип	Диапазон регулирования [мбар]
DG 17VC	217
DG 40VC	540
DG 110VC	30110
DG 300VC	100300

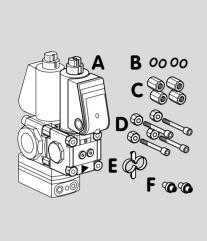
Комплект поставки:

- 1 х датчик давления для газа,
- 2 х винта с потайной головкой,
- 2 х уплотнительных кольца.

8.2 Датчик давления для газа DG..VCT для VAD..T, VAG..T

Тип	Диапазон регулирования [мбар]
DG 17VCT	0,86,8
DG 40VCT	216
DG 110VCT	1244
DG 300VCT	40120

Комплект поставки:


1х датчик давления для газа с 18" проводами для подключения,

- 2 х винта с потайной головкой,
- 2 х уплотнительных кольца.

Контроль входного давления p_e : штекер датчика давления направлен к входному фланцу.

Контроль выходного давления p_a : штекер датчика давления направлен к выходному фланцу.

Принадлежности

8.3 Байпасный клапан / пилотный газовый клапан VAS 1

8.3.1 Комплект для блока VAS 1 + VAD/VAG/ VAV 1

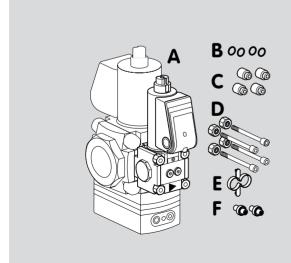
Комплект поставки:

A 1 х байпасный клапан VAS 1

В 4 х О-кольца

С 4 х сдвоенные гайки

D 4 х соединительных комплекта


Е 1 х вспомогательное устройство

Байпасный клапан VAS 1

F 2 х соединительные втулки, если байпасный клапан имеет глухой фланец на выходе

Пилотный газовый клапан VAS 1

F 1 х соединительная втулка, 1 х глухая втулка, если байпасный клапан на выходе имеет резьбовой фланец.

8.3.2 Комплект для блока VAS 1 + VAD/VAG/VAV 2, VAD/VAG/VAV 3

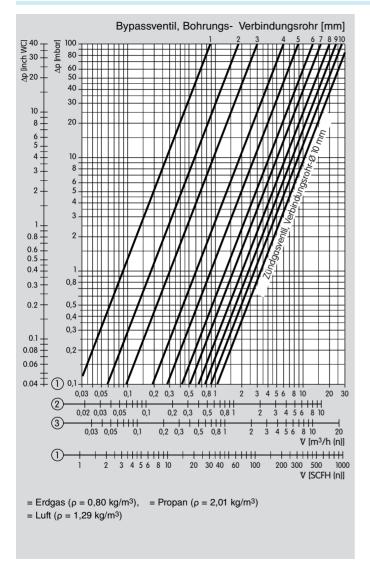
Комплект поставки:

A 1 х байпасный клапан VAS 1,

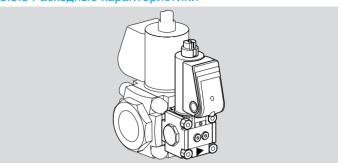
В 4 x О-кольца,

С 4 х распорные втулки,

D 4 х соединительных комплекта,

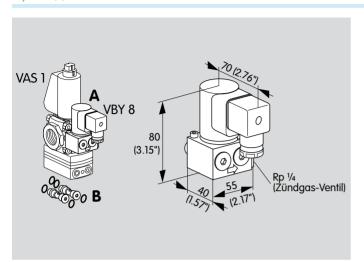

Е 1 х вспомогательное устройство.

Байпасный клапан VAS 1


F x 2 соединительные втулки, если байпасный клапан имеет глухой фланец на выходе.

Пилотный газовый клапан VAS 1

F 1 х соединительная втулка, 1 х глухая втулка, если байпасный клапан на выходе имеет резьбовой фланец.



8.3.3 Расходные характеристики

Расходные характеристики были составлены для байпасного клапана VAS 1 с соединительной втулкой диаметром от 1 до 10 мм и для пилотного клапана горючей смеси с 10 мм соединительной втулкой.

Принадлежности 34

8.4 Байпасный клапан /пилотный газовый клапан VBY 8 для VAD/VAG/VAV 1

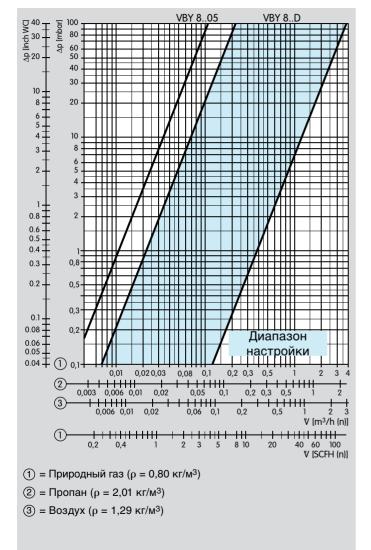
8.4.1 Байпасный клапан VBY 8

А 1 х байпасный клапан VBY 8

В 2 х фиксирующих винта с потайной головкой,

с 4 х О-кольцами: оба винта имеют байпасное отверстие.

8.4.2 Пилотный газовый клапан VBY 8


А 1 х пилотный газовый клапан VBY 8

В 2 х фиксирующих винта с потайной головкой, с 5 х О-кольцами: только один винт имеет байпасное отверстие.

8.4.3 Выбор

8.4.4 Расходные характеристики **VBY 8..D**

Расходные характеристики были составлены при вращении дросселя (с помощью 4 мм ключа) на 1/4 оборота.

Макс. расход: от 10 до 100%.

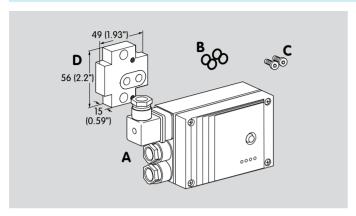
VBY 8..05

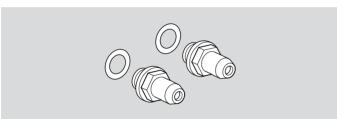
Расход регулируется через 0,5 мм сопло и, таким образом, обеспечивается постоянство кривой на диаграмме расхода.

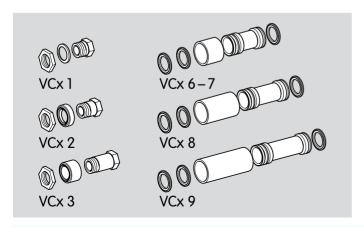
8.4.5 Технические данные

Окружающая температура:

от 0° до +60°C, не допускается выпадение конденсата Температура хранения:


от 0° до $+40^{\circ}$ С, не допускается выпадение конденсата Потребление мощности:


24 B = 8 BT


Степень зашиты: ІР 54

Принадлежности 36

8.5 Автомат контроля герметичности TC 116V

для VAx 1-3

Комплект поставки

А 1 х Автомат контроля герметичности ТС 116V

В 4 х О-кольца

С 2 х фиксирующих винта с потайной головкой

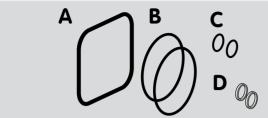
Для монтажа автомата контроля герметичности с правой или левой стороны регулятора давления с газовым электромагнитным клапаном требуется пластина адаптера:

D 1х пластина адаптера,

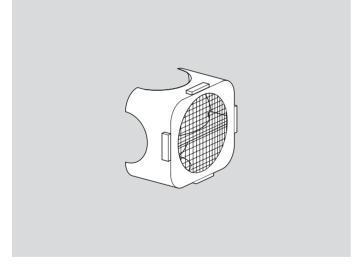
Для монтажа:

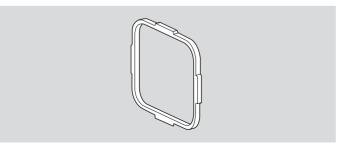
с левой стороны: заказной номер 74922391 с правой стороны: заказной номер 74921995.

8.6 Штуцер для замера давления


Штуцер для проверки давления на входе p_e и давления на выходе p_a .

8.7 Уплотняющая втулка


При электроподключении комбинированного блока клапанов с регулятором давления VCx клеммные коробки должны соединяться при помощи уплотняющей втулки.


Втулка может использоваться только если клеммные коробки расположены на одинаковой высоте и с одной и той же стороны.

ринадлежности 37

8.8 Комплект уплотнений VA 1-3

Комплект поставки:

А 1 х сдвоенный уплотнительный блок,

В 2 x О-кольца (фланец).

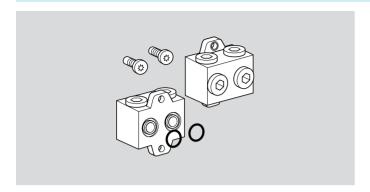
С 2 х О-кольца (датчик давления),

D 2 х уплотнительных кольца (штуцер отбора).

8.9 Дроссельная шайба

Размер	Диаметр трубы DN	Дроссельная шайба с выходным диаметром (мм)
1	15	17
1	20	25
1	25	30
2	40	46
3	50	58

Если регулятор давления VAD/VAG/VAV установлен в последней точке перед газовым электромагнитным клапаном VAS: дроссельная шайба должна устанавливаться на выходе регулятора давления.

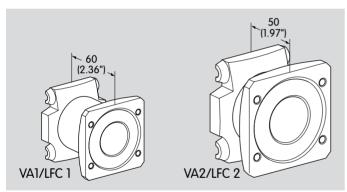

Если VAD/VAG/VAV устанавливается перед VAS 1: использовать дроссельную шайбу с выходным диаметром d=30 мм. Для типоразмера 1 установлены DN 15 или 20: дроссельная шайба DN 25 заказывается отдельно.

8.10 Удерживающая рамка

Если регулятор давления VAD/VAG/VAV установлен в последней точке перед газовым электромагнитным клапаном VAS: удерживающая рамка должна устанавливаться на выходе газового электромагнитного клапана VAS для закрепления дроссельной шайбы на выходе регулятора.

Удерживающая рамка заказывается отдельно.

Принадлежности 38


8.11 Монтажный комплект

Для установки по месту манометра и других принадлежностей.

Комплект поставки:

2 х самонарезающих винта для установки,

2 х О-кольца.

8.12 Комплект фланцев для Moduline

Для монтажа Vax/VCx на Регуляторах Moduline типоразмеров 1 и 2:

Комплект фланцев VA1/LFC, заказной номер 74922171, Комплект фланцев VA2/LFC, заказной номер 74922172.

Комплект поставки:

1 х фланец,

1 х О-кольцо,

4 х винта с цилиндрической головкой,

4 х квадратных гайки.

9 Технические данные

Типы газа: природный газ, сжиженный (газообразная форма), биогаз (H_2S max 0.1 %) или воздух; другие газы по запросу.

Газ должен быть сухим независимо от температурных условий и не должен содержать конденсат.

Диапазон входного давления pe: 10 - 500 мбар.

Время открытия:

быстро открывающийся: < 0.5 с;

Время закрытия:

быстрое закрытие: <1 с.

Температура окружающей среды:

-20 - 60°C, не допускается образование конденсата.

Температура хранения: 0..+40°C

Безопасность клапана:

Класс герметичности A по EN 161.

Общезаводское исследование: класс 7410 и 7411,

ANSI Z21.21 и CSA 6.5.

Соответствует классу регуляторов A по EN 88.

Диапазон регулирования до 10:1.

Напряжение питания:

230 В ~, +10/-15 %, 50/60 Гц;

120 В~, +10/-15 %, 50/60 Гц;

24 B =. ±20 %.

Кабельные вводы: М20 х 1,5.

Электроподключение: кабель макс. 2,5 мм² или штекер с разъемом по EN 175301-803.

Степень защиты: ІР 65.

Продолжительность рабочего цикла 100 %.

Коэффициент мощности электромагнитной катушки:

 $\cos \varphi = 1$.

Потребляемая мощность:

Тип	24 B= [BT]	120 В~ [Вт]	230 В~ [Вт]
VAD/VAG/VAV 1	28	30	30
VAD/VAG/VAV 2	46	54	53
VAD/VAG/VAV 3	58	63	63

Материал корпуса клапана: алюминиевый сплав Затвор клапана: NBR (нитрил).

Соединительные фланцы с внутренней резьбой: Rp по ISO 7-1,

NPT πο ANSI/ASME

Нагрузка на контакты индикатора положения:

Тип	Напряже- ние сети	Мин. сила тока (активная нагрузка)	Макс. сила тока (активная нагрузка)
VAxS	12250 В~, 50/60 Гц	100 мА	3 A
VAxG	12250 В~, 50/60 Гц	2 мА	0,1 A

Частота включений: 5 х мин.

Ток включения	Циклы включений					
[A]	$\cos \varphi = 1$	$\cos \varphi = 0.6$				
0,1	500 000	500 000				
0,5	300 000	250 000				
1	200 000	100 000				
3	100 000	-				

Технические данные 40

VAD

Выходное давление p_G: 2,5...25 мбар, 5,0...50 мбар, 10...100 мбар.

VAG

Выходное давление p_G: 0.5-100 мбар. Диапазон настройки при мин. расходе: ±5 мбар. Соотношение давлений газа и воздуха: 1:1

Входное давление должно всегда быть выше, чем управляющее давление воздуха: управляющее давление воздуха p_1 + потери давления Δp + 5 мбар

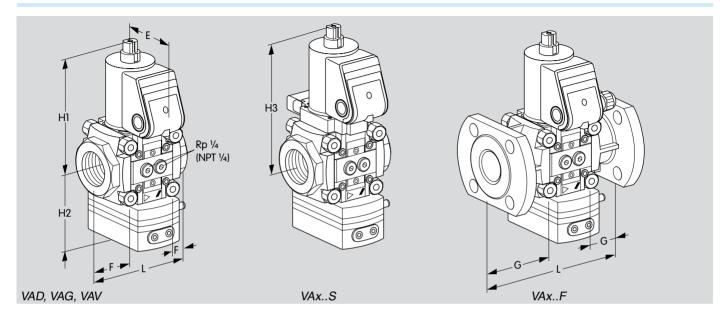
Подключение управляющего давления воздуха p_L : VAG..K: одна соединительная втулка 1/8''для пластмассовой трубки (внутренний диаметр 3,9; наружный диаметр 6,1) или

VAG..Е: одно зажимное приспособление для трубки 6х1, или

VAG..A: NPT адаптер 1/4" или VAG..N: ноль-регулятор с сапуном.

VAV

Выходное давление p_G : 0,5...30 мбар. Управляющее давление воздуха p_L : 0,4...30 мбар. Управляющее давление камеры сгорания p_F : - 20..20 мбар.


Минимальный перепад управляющих давлений $p_L - p_F$: 0,4 мбар.

Минимальный перепад давлений p_G – p_F : 0,5 мбар. Диапазон регулирования при минимальной нагрузке: $\pm 1,5$ мбар.

Передаточное соотношение газ-воздух: от 0,6:1 до 3:1 Давление на входе p_e должно быть всегда выше чем управляющее давление воздуха p_L х передаточное соотношение + потери давления Δp + 1,5 мбар.

Подключение управляющего давления воздуха p_L : VAV..K: 2 соединительных втулки для пластмассовых трубок (внутренний диаметр 3,9, наружный диаметр 6,1).

Технические данные

9.1 Размеры

Тип	Присоед	цинение	Размеры						Bec	
			L	E	F	G	H1	H2	H3	
	Rp/NPT	DN	MM	MM	MM	MM	MM	MM	MM	KΓ
VAx 115	1/2	15	75	75	15	_	140	82	159	1,8
VAx 120	3/4	20	91	75	23	_	140	82	159	1,9
VAx 125	1	25	91	75	23	-	140	82	159	1,9
VAx 240	11/2	40	127	88	29	66	164	112	185	4,4
VAx 350	2	50	155	96	36	74	225	135	250	8,3

10 Техническое обслуживание

Один раз в год, два раза в год при работе на биогазе.

Если пропускная способность падает, прочистите сетку

Контакты

Официальный представитель

в России **ООО** «Волгатерм»

г. Нижний Новгород, ул.Горького, 117 тел. (831) 278-57-01, 278-57-04

факс (831) 278-57-02

volgaterm@kromschroeder.ru www.kromschroeder.ru Возможны технические изменения, служащие пргрессу.

Kromschroeder это торговая марка Elster Group

